Hash Tables

Saurabh Mathur

VIT University

14BIT0180

September 29, 2015

< 1 →

э

Overview

1 Why use Hashing

- Word Count
- Sets
- Unique data representation

2 What is a Hash Table

- Definition
- Structure

3 Anaylsis

- Trade-offs
- Asymptotic Analysis

Word Count Sets Unique data representation

Word Count

Read a text file, count the number of times each word appears, and print and how many times each word appears.

Input: A sequence of *n* words **Output:** A list of (*word*, *frequency*) pairs

Word Count Sets Unique data representation

Read a text file and, print each unique word.

Input: A sequence of *n* words **Output:** A list of *k* unique words (k < n)

Word Count Sets Unique data representation

Unique data representation

Read a sequence of text files and, print a string uniquely identifying each file.

Input: A sequence of *n* text files **Output:** A list of *n* unique strings corresponding to each file.

Definition Structure

Definition

A **Hash Table** is a data structure used to implement the associative array ADT, a structure that can map keys to values.

17 ▶

э

Definition Structure

Structure

- A hash table consists of -
 - A Hash Function
 - An array

æ

< 1 →

A hash function is a function that almost uniquely maps any value (called a key) to an index in the array. The key may be an integer, a string, a structure etc.

Eg. SHA-0, SHA-1, SHA-2, MD4, MD5

Operations

void put(Key key, Value val)
Value get(Key key)
void remove(Key key)

< 🗇 🕨 <

э

э

Definition Structure

Collision Resolution

- Probing
 - Linear
 - Quadratic
- Chaining

æ

э

< □ > <

Definition Structure

Probing

イロン イロン イヨン イヨン

æ

Definition Structure

Chaining

Saurabh Mathur Hash Tables

æ

- ₹ 🖬 🕨

Image: A mathematical states and a mathem

Trade-offs Asymptotic Analysis

Trade-offs

- Memory sacrificed for speed and random access.
- No sequential/ordered access.

A ▶

Trade-offs Asymptotic Analysis

Asymptotic Analysis

For an ideal hash, insertion, deletion and look-up are all constant time i.e. O(1)

implementation	guarantee			average case			ordered
	search	insert	delete	search	insert	delete	iteration?
unordered array	N	N	N	N/2	N/2	N/2	no
ordered array	lg N	Ν	Ν	lg N	N/2	N/2	yes
unordered list	Ν	Ν	Ν	N/2	Ν	N/2	no
ordered list	Ν	Ν	Ν	N/2	N/2	N/2	yes

A D

Trade-offs Asymptotic Analysis

The End

Saurabh Mathur Hash Tables

<ロ> <同> <同> < 同> < 同>

æ