Introduction	Architecture	Instruction Sets
00 00	0 0 0	000 0

ARM Processors

Processors

VIT U

Saurabh, Tushar, Nitesh, Rohan, Paritosh

VIT University

September 14, 2015

Introduction	Architecture	Instruction Sets	Processors
00 00	0 0 0	000	0000 00

イロン 不同 とくほう イロン

3

VIT U

Overview

1 Introduction

- What is ARM ?
- Why ARM ?
- 2 Architecture
 - Data and Instruction Storage
 - Processor Modes
 - Register Set
- 3 Instruction Sets
 - Instruction Sets
 - Comparision
- 4 Processors
 - List of ARM Processors
 - Cortex

Introduction 00		
What is ARM	?	

Architecture

Instruction Sets

Processors 0000 00

VIT U

ARM: Advanced RISC Machines

Origins

- Originated in England in 1984 as Acorn RISC Machines.
- Used mostly for educational systems.
- In 1990, the research section of Acorn separated from the parent company and formed: ARM Ltd.

Figure : England

Introduction	Architecture	Instruction Sets	Processors
0 00	0 0 0	000	0000
What is ARM ?			

RISC Machines ?

Basically, a simpler and configurable design for small-scale systems.

- RISC stands for "Reduced Instruction Set Computer"
- Comparision with CISC (Complex Instruction Set Computer)
 - Fixed 32-bit instruction size instead of variable.
 - Larger Register Bank of 32-bit Registers.
 - Easier to prototype and put together.

Introduction	Architecture	Instruction Sets	Processors
● ● ○	0 0 0	000	0000
Why ARM ?			

Why is ARM special

Selling Points

- Best MIPS (Million Instructions Per Second) to Watts ratio
- Best MIPS to \$ ratio in the industry.
- The smallest CPU die size.
- Highly Customizable and Flexible.

Figure : A Raspberry Pi.

・ロト ・回ト ・ヨト ・ヨト

Introduction	Architecture	Instruction Sets	Processors
00	0	000	0000
0●	0	0	00
Why ARM ?			

Market Share

The low power consumption of ARM processors has made them very popular: over 50 billion ARM processors have been produced as of 2014.

Figure : ARM-based chips are found in nearly 60 percent of the worlds mobile devices.

Introduction	Architecture	Instruction Sets	Processors
00	•	000	0000
00	0	0	00
	0		
Data and Instruction Storage			

Data Sizes and Instruction Sets

- When used in relation to ARM
 - Halfword 16 bits.
 - Word 32 bits.
 - Doubleword 64 bits.
- Most ARMs implement two instruction sets
 - 32 bit ARM instruction set
 - 16 bit Thumb instruction set
- Jazelle-DBX cores can also execute Java bytecode

(日) (周) (日) (日) (日)

Introduction	Architecture	Instruction Sets	Processors
00 00	0 • 0	000 0	0000
Processor Modes			

Processor Modes

- The ARM has seven basic operating modes
- Each mode has its own stack and a different set of registers
- Some operations can only be carried out in a privileged mode

	Mode	Description	
s	Supervisor (SVC)	Entered on reset and when a Software Interrupt instruction (SWI) is executed	
mode	FIQ	Entered when a high priority (fast) interrupt is raised	
eption 	IRQ	Entered when a low priority (normal) interrupt is raised	Privileged
EXC	Abort	Used to handle memory access violations	modes
	 Undef	Used to handle undefined instructions	
	System	Privileged mode using the same registers as User mode	
	User	Mode under which most Applications / OS tasks run	Unprivileged mode

Saurabh, Tushar, Nitesh, Rohan, Paritosh

3

イロン 不同 とくほう イロン

Introduction	Architecture	Instruction Sets	Processors
00	0	000	0000
00	0	0	00
	•		
Register Set			

Register Set

VIT U

Introduction	Architecture	Instruction Sets	Processors
00 00	0 0 0	•••• •	0000
Instruction Sets			

ARM Instruction Set

All instructions are 32 bit long. Examples

Instruction	Туре	Comment
sub r0, r1, #5	data processing	r0 = r1 - 5
B <label></label>	branching	jump (+/- 32MB)

Table : Examples of ARM instructions

(日) (图) (문) (문) (문)

Introduction	Architecture	Instruction Sets	Processors
00 00	0 0 0	○●○ ○	0000
Instruction Sets			

Thumb Instruction Set

- 16 bit instruction set.
 - Optimized for code density from C code (65% ARM code size)

・ロト ・回ト ・ヨト ・ヨト

VIT U

- Improved performance for narrow memory.
- Subset of functionality of ARM instruction set.
- Not a "regular" instruction set.
 - Constraints are not generally consistent.
 - Targeted at compiler generation, not hand-coding.

Introduction	Architecture	Instruction Sets	Processors
00 00	0 0 0	000	0000
Instruction Sets			

Thumb-2 Instruction Set

- A major extension to the Thumb Instruction Set
 - Adds 32-bit instructions to implement almost all of the ARM functionality
 - Retains the complete 16-bit Thumb instruction set
- Design objective: ARM performance with Thumb code density
 - No switching between states.
 - The Compiler automatically selects mix of 16 and 32 bit instructions.

イロト 不得 トイヨト イヨト 二日

Introduction	Architecture	Instruction Sets	Processors
00	0	000	0000
00	0	•	00
Comparision			

Comparision

VIT U

Introduction 00 00	Architecture 0 0 0	Instruction Sets 000 0	Processors ●○○○ ○○
List of ARM Processors			

ARM Processors

ARM1

- The first ARM processor
- Used for evaluation systems, mainly a prototype
- ARM2
 - 27 registers, 16 accessible at one time.
 - 8 MHz, 4 Million instructions per second
- ARM3
 - First integrated memory cache.
 - Coprocessor interface added.
 - 25 MHz, 12 Million instructions per second

3

Introduction 00 00	Architecture 0 0 0	Instruction Sets 000 0	Processors 0000 00
List of ARM Processors			

ARM Processors

ARM4 & ARM5

- Never made.
- Numbering scheme changed due to shift from Acorn to ARM ltd.
- ARM6
 - First to have 32 bit addressing capability.
 - 31 registers, 36,000 transistors
 - 33 MHz, 36 Million instructions per second
- ARM7
 - Functionally identical to ARM6.
 - 26-bit addressing support dropped.
 - 40 MHz, 4 Million instructions per second

3

Introduction 00 00	Architecture 0 0 0	Instruction Sets	Processors ○○●○ ○○
List of ARM Processors			

- ARM8
 - 5-stage pipeline.
 - 80 MHz, 80 Million instructions per second
- StrongARM
 - Developed by ARM Itd in conjunction with Digital.

イロト 不得 とくほと くほとう ほ

VIT U

- 5-stage pipeline.
- 200 MHz, 230 Million instructions per second
- ARM9
 - 180 MHz, 200 Million instructions per second

Introduction 00 00	Architecture O O O	Instruction Sets 000 0	Processors 0000
List of ARM Processors			

ARM10

- Developed by ARM Itd in conjunction with Digital .
- 300 MHz, 400 Million instructions per second

(日) (图) (문) (문) (문)

Introduction 00 00	Architecture O O O	Instruction Sets 000 0	Processors ○○○○ ●○
Cortex			
Cortex			

The ARM series were succeeded by the Cortex series of processors

- Cortex-M
- Cortex-R
- Cortex-A (32-bit)
- Cortex-A (64-bit)

3

・ロン ・回と ・ヨン ・ヨン

Introduction	Architecture	Instruction Sets	Processors
00	0 0 0	000	0000 00
Cortex			

The End

Saurabh, Tushar, Nitesh, Rohan, Paritosh

2

・ロン ・回 と ・ヨン ・ヨン