
Distributed Systems: Assignment 2
Saurabh Mathur

February 10, 2019

MapReduce: Simplified Data Processing on
Large Clusters

Jeffery Dean and Sanjay Ghemawat

Summary

This paper tackles the problem of efficiently processing a large
amount of data. There are two approaches to such a problem - we
can either use a single computer with a large enough memory and a
fast enough processor or we can use a cluster of many computers of
moderate hardware specifications. The authors focus on the second
approach. They describe an abstract programming model and an
associated distributed implementation that allows a user to run
distributed computations without having to worry about the details
of parallelization.

The programming model is inspired by functional
programming and consists mainly of two functions - map and
reduce. Specifically, the mapper function takes in a key-value pair
and outputs a set of key-value pairs and the reducer function
groups together the intermediate key-value pairs and outputs a
smaller set of pairs. The key idea here is that the intermediate
values are sent to the reducer using an iterator. This allows
handling of lists too big to fit in memory.

Assignment 2 (CSCI-B 534) Page 1 of 11



The implementation described in this paper assumes a cluster
of thousands of commodity hardware machines connected via
commodity networking hardware. So, machine failures are common.
One machine in the cluster is denoted as the master node and the
rest as worker nodes. The implementation requires three pieces of
user code to work - a splitting function that splits the input into
roughly 16-64MB chunks, the mapper function and the reducer
function. The master node uses the splitting function to split the
data and assigns each chunk to a worker node as a map task. All
map tasks run in parallel and when all of them finish, their output
is sorted and grouped by key and passed to other worker nodes as
reduce tasks. The reducer function is applied on the grouped data
and the final output from each reducer is sent to the master node.

Apart from this, following practical considerations also come
into play -

• Worker Failure: Master pings each worker periodically and
re-executes failed tasks. This is possible because the mapper
and the reducer are idempotent.

• Master Failure: Master’s state is checkpointed periodically
and the master is restored from the most recent checkpoint on
failure.

• Locality: Tasks are assigned to machines that are as close to
the data as possible to minimize network latency.

• Task Granularity: A larger the number of map tasks with
each worker having multiple tasks corresponds to more
efficient recovery from worker failures. However, this must be
balanced against the number of scheduling decisions that the
master will have to make.

• Stragglers: Multiple copies of the same tasks are run on
different machines and the output of the first one to finish is
used. This prevents a single unusually slow task from slowing
down the entire job.

Assignment 2 (CSCI-B 534) Page 2 of 11



The authors also describe some extensions of the MapReduce
system -

• Partitioning function: The user is allowed to specify a custom
function that partitions the output of the mapper and divides
it among the reducers.

• Combiner function: If there is a lot of repetition in the key of
mapper output, a combiner function is applied to each
mapper’s output. Typically, this is the same as the reducer
function.

• Bad records: In some cases, it is acceptable to ignore a few
records. So, if repeated failures are detected, the master node
marks the problematic records to be ignored in the next
re-execution.

While MapReduce was originally developed as a generic framework
for internal distributed computing jobs at Google, it has been for a
variety of tasks of similar scale while having an easy to use
abstraction.

Observations

• The authors assume that all the machines in the cluster are
homogeneous which might not be the case for many
distributed computing clusters outside Google.

• It is unclear how the number of workers is determined.

• While the rest of the paper assumes idempotent and
deterministic mapper and reducer functions, the authors
briefly talk about the case where the functions are
non-deterministic. However, it is unclear how the guarantees
would be affected by the functions being non-deterministic.

Assignment 2 (CSCI-B 534) Page 3 of 11



The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Summary

This paper tackles the problem of large scale data storage for a
large number of clients. The authors describe the Google File
System which supports only the bare minimum operations while
providing high fault tolerance and concurrent access. The GFS
works on assumptions that are very similar to MapReduce - large
amount of data, high availability of commodity hardware and high
failure rate. Apart from these, GFS also assumes that most file
writes are appends and reads are either large streaming reads or
small reads in random order which can be batched together. GFS
has a very minimal interface. It supports create, delete, open, close,
read and write operations. It also supports snapshot and record
append operations. The record append operation is atomic.

A cluster consists of a master node and many chunk-servers.
Each file is split into many chunks and each chunk is replicated on
several chunk-servers. The file-chunk replicas are validated using
checksums. The master node maintains the mappings and locations
of all the file-chunks in memory. It directs clients to the appropriate
chunk-server based on this mapping. This information is collected
by polling the chunk-servers.

Write operations are implemented using Leases. The master
grants a chunk-server lease to a chunk and marks the server as
primary. The server now has a fixed amount of time to decide an
order of write and propagate it to other replicas. Leases initially
have a timeout of 60 seconds but the chunk-server can request
extensions. This minimizes management overhead at the master
node. The authors also discuss the following practical
considerations -

• Data Flow: Each machine transfers data to the machine that

Assignment 2 (CSCI-B 534) Page 4 of 11



is closest to it and has not received the data.

• Snapshots: Copy-on-write operations are used to implement
snapshots. The master prevents any writes from disturbing
the snapshot by revoking an issued leases.

• Replica Placement: Replicas are placed not only to maximize
reliability but also to maximize availability and bandwidth
utilization. Thus, replicas are placed across racks.

• Chunk Placement: Replicas are placed on chunk-servers with
below average disk space utilization to equalize disk
utilization. Also, the number of recently created chunks for a
given server should be limited as creation is usually followed
by heavy write traffic.

• Namespace management: The locking mechanism is very
fine-grained and all operations require very specific locks.
Thus, concurrent mutations are possible in the same directory.

• Garbage collection: Deleted files are not removed from the
filesystem. They are renamed to a hidden name and deleted
after 3 days. This allows reversal of accidental deletions.

Observations

• GFS does not implement a standard file system interface.

• The master could be a bottleneck if there are very frequent
accesses. Also, the metadata is stored in memory in the
master. The size of master’s memory could place an upper
limit on the number of chunks that can be saved.

• Distances (to optimize data flow) are measured using IP
Addresses. This might not be a good heuristic if we do not
have full control over network topology.

Assignment 2 (CSCI-B 534) Page 5 of 11



The Hadoop Distributed File System

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler

Why

I chose this paper because Hadoop is open-source and as a result
the paper can cover the actual implementation details in much
greater depth than GFS.

Summary

Hadoop is a collection of open-source software component that
allow storage of large amounts of data and computations on such
data by distributing the load among a cluster of machines using the
MapReduce programming model. While Google’s implementation of
MapReduce is supported by the Google File System (GFS),
Hadoop’s MapReduce is supported by the Hadoop Distributed File
System (HDFS). While GFS served as the primary inspiration for
this work, this work also focused on adapting the same ideas for a
more general purpose computing framwork and making fewer
assumptions about the data and operations.

Since I have already discussed GFS in detail above, I will
discuss some key places where HDFS diverges from the GFS design.

• Architecture: While the general architecture is same as GFS,
the naming and implementation are different. NameNode and
DataNode are analogous to Master and Chunk-Servers in
GFS.

• File Structure: Each file is split in blocks of fixed size. The
default is 128MB but the size is configurable.

• Data Flow: HDFS directly exposes block locations and leases
are granted directly to the client. However, data is not
guaranteed to be visible to other clients unless the file is

Assignment 2 (CSCI-B 534) Page 6 of 11



closed. Alternatively, the hflush operation can be called to
ensure that the changes are synchronized.

• Chunk placement: Disk space utilization at each DataNode is
not considered when placing a block. While this avoids a
small set of nodes getting a lot of traffic, the data is not
guaranteed to be placed uniformly across nodes. So, a
balancer tool is provided that can be configured with a
threshold value and deployed as an application program.

• Replica policy: The replica placement policy in this paper is
defined more clearly than in GFS - no node can have more
than one replica of any block and no rack can have more than
two replicas of same block.

• POSIX Standard: While HDFS does not implement the full
standard, it does have some of its features modeled after the
POSIX standard. The file permissions scheme is an example
of this.

Observations

• While it does diverge from GFS at some places, HDFS still
has the same shortcoming of the NameNode being a
bottleneck.

• While running the load balancer as a separate program make
the system more configurable, this would be at the cost of
performance and bandwidth usage.

Assignment 2 (CSCI-B 534) Page 7 of 11



Improving MapReduce Performance in
Heterogeneous Environments

Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz,
and Ion Stoica

Why

I chose this paper because I had the same question about how
would MapReduce perform in a cluster in which all machines do
not have the same hardware.

Summary

One of the assumptions of the MapReduce implementation (as
discussed above) is that all the nodes are homogeneous, that is,
they have similar hardware configurations and all tasks progress
linearly. This assumption is key when deciding which node is a
straggler and running backup tasks for such nodes. However, this
assumption does not hold in practice. This paper tackles this
problem by proposing a scheduling algorithm called Longest
Approximate Time to End (LATE).

The authors make specific arguments for each assumption
made by the Hadoop scheduler that breaks down in practice.

• Homogenity: The assumption that a detectably slow node is
faulty breaks down as in practice, nodes can be slow for many
reasons - differences in hardware, contention from other users,
disk and network bottle-necking. Any of these could cause the
node slow down. Further, fixed threshold based decision
making could result in the scheduler launching too many
speculative tasks or worse, it could also launch wrong tasks.

• Backup tasks on idle nodes are free: When resources are
shared in a cluster, this could worsen performance at
bottlenecks like the network bandwidth.

Assignment 2 (CSCI-B 534) Page 8 of 11



• Progress score = fraction of work completed:This implies that
each phase like copy, sort and reduce roughly takes an equal
amount of time. This is not true as a copy operation which is
over the network could easily dominate the other phases.

LATE is implemented to pick tasks for speculative execution
which are expected to complete the furthest in the future. LATE
uses two heuristics to ensure that unnecessary backup tasks are not
executed. The first is SpeculativeCap which is a cap on the
maximum number of backup tasks that can be running at once.
The second is SlowTaskThreshold which is used to judge if a task is
slow enough to be speculated upon.

Observations

• The Hadoop task scoring scheme makes wrong assumptions
and it is not fair. However, the LATE algorithm still uses this
scheme.

• While the authors provide their values for the new threshold
parameters that they have introduced, this still adds another
set of parameters that need to be tuned for each cluster.

Assignment 2 (CSCI-B 534) Page 9 of 11



Map-Reduce for Machine Learning on
Multicore

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary
Bradski, Andrew Y. Ng, and Kunle Olukotun

Why

I chose this paper because it applied the MapReduce framework in
a non-distributed system setting.

Summary

This paper is from 2007 when multi-core systems were becoming
popular. However, most machine learning algorithms were single
threaded. This paper approaches the task of parallelizing machine
learning algorithms by adapting the MapReduce model for this
task.

The authors talk about three classes of machine learning
algorithms. The first is Leslie Valiant’s Probably Approximately
Correct (PAC) model in which the algorithm uses randomly drawn
examples to learn the target function. The second is the Statistical
Query Model by Michael Kearns in which the algorithm only has
access to some type of aggregate over the examples and not the
actual values. The authors talk about a third model, called the
summation form that they developed. The authors claim that any
algorithm that can be written in Statistical Query form can also be
written in summation form.

The key idea in this paper is that we can think of each core as
a worker node and perform the computation of aggregates by
applying MapReduce. The aggregated result is then used to update
the machine learning model. However, for some machine learning
algorithms, additional scalar variables are needed in mapper and
reducer functions. To allow this, a special query_info interface is
provided which can be implemented specific to the algorithm. The

Assignment 2 (CSCI-B 534) Page 10 of 11



authors implemented many algorithms using this framework
including Locally Weighted Linear Regression, Naive Bayes,
Logistic Regression, Neural Networks and Expectation
Maximization.

Observations

• The parallelization framework does not modify the
algorithms. So, this is an exact implementation.

• The speed up scales linearly with the number of cores.

Assignment 2 (CSCI-B 534) Page 11 of 11


